磷酸三乙酯|阻燃剂TEP|亚磷酸三苯酯|抗氧剂、稳定剂TPPi|磷酸三苯酯|阻燃剂TPP|磷酸三2-氯丙基酯|阻燃剂TCPP
   
联系我们

联系人: 邵君( 先生,国内国际部经理 )
电话: +86-0512-58961066
传真: +86-0512-58961068
手机: +86-18921980669
E-mail: sales@yaruichem.com
地址: 江苏省张家港市杨舍镇东方新天地10幢B307
Skype: yaruichem@hotmail.com
MSN: yaruichem@hotmail.com
QQ: 2880130940
MSN: yaruichem@hotmail.com Skype: yaruichem@hotmail.com

当前位置:首页 > 行业新闻 > 聚氨酯弹性体耐热扩链剂

聚氨酯弹性体耐热扩链剂

来源:邵君( 先生,国内国际部经理 ) 发布时间:2018-4-17 15:16:47
本文介绍低聚物多元醇、异氰酸酯、催化剂、聚合工艺条件、引入分子内基团、聚氨酯弹性体耐热扩链剂对弹性体耐热性的影响分析。

原料对聚氨酯弹性体耐热性影响。聚氨酯弹性体由软段(低聚物多元醇,主要分为聚酯型、聚醚型和聚烯烃型多元醇等)和硬段(二异氰酸酯和聚氨酯弹性体耐热扩链剂)组成。

聚氨酯弹性体耐热扩链剂对弹性体耐热性的影响与其刚性有关。一般来说,刚性链段含量越高,弹性体耐热性就越好。

低聚物多元醇的相对分子质量是多分散的,而多异氰酸酯往往是多种异构体的混合物,异构体的存在会破坏硬段的规整性,使得弹性体的耐热性降低。严格控制原料的纯度,降低缩二脲和脲基甲酸酯等热稳定性差的基团的摩尔分数,可以提高弹性体耐热性。

低聚物多元醇。不同结构的低聚物多元醇与相同异氰酸酯反应生成的氨基甲酸酯,其热分解温度相差很大,伯醇最高,叔醇最低,这是由于靠近叔碳原子和季碳原子的键最容易断裂的缘故。由于酯基的热稳定性比较好,而醚基的α2碳原子上的氢容易被氧化,所以聚 酯型聚氨酯耐热性能比聚醚型聚氨酯好。

由聚酯所制备的聚氨酯,聚酯类型的不同对热性能几乎没有太大的影响。对于聚醚型聚氨酯,聚醚的类型对其耐热性能有一定的影响,如由甲苯二异氰酸酯(TDI)、3,3′2二氯24,4′二苯基甲烷二胺(MOCA)分别与聚氧化丙烯二醇和聚四氢呋喃醚二醇(PTMG)所制备的聚氨酯,放入121℃环境下老化7天后,二者的拉伸强度存在明显差别,前者室温下拉伸强度 保留率为44%,而后者保留率为60%。



产品外观:类白色粉末或颗粒

物理特性

熔点: 87-89℃

含量:≥99.0%

4,4'-亚甲基双(2,6-二乙基苯胺),固化剂扩链剂MDEA应用:聚氨酯弹性体、聚脲树脂固化剂及环氧树脂固化剂.

包装: 25kg/桶



低聚物多元醇相对分子质量或分子链长对聚氨酯热降解的特 征分解温度没有明显的影响。刘凉冰[6] 研究了聚酯型和聚醚型聚氨酯的降解机理,并分析了影响其耐热性的因素,得出聚酯型聚氨酯弹性体耐热性能优于聚醚型的结论。

异氰酸酯。硬段是影响聚氨酯弹性体耐热性能的主要结构因素。硬段的刚性、规整性、对称性越好,其弹性体的热稳定性亦越高。硬段质量分数增加,形成较多的硬段有序结构和次晶结构,使两相发生逆转,硬段相成为连续相,软段分散在硬段相中,从而提高了高温下弹性体的拉伸强度和耐热性。

从分子结构上看,二苯基甲烷二异氰酸酯(MDI)与TDI分子结构类似,均含有NCO基和苯环结构,但是由于结构简洁性、刚性、规整度和对称性较弱,导致其弹性体的微相分离程度不够,制得的弹性体热稳定性均一般。

一般情况下,异氰酸酯纯度越高,异构体越少,生成的聚氨酯弹性体规整度、对称性越高,耐热性越好。

结构规整的异氰酸酯形成的硬链段极易聚集,提高了微相分离程度,硬段间的极性基团产生氢键,形成硬段相的结晶区,使整个结构具有较高的熔点。

测试改性前后二胺活性的方法是测定其与异氰酸酯反应的凝胶时间。凝胶时间是从指双组分原料混合开始计时,至混合物不再流动时的时间。凝胶时间越长说明其反应活性越小,凝胶时间越短说明其反应活性越大。实验前,需将待测样品在25摄氏度正负0。5摄氏度放置8h以上。实验时,称取D-2000和扩链剂共大约50g,放于250ml一次性塑料杯中,按-NCO/-NH=1。05用减量法称取适量MDI聚醚多元醇半预聚物加入上述塑料杯中,用调刀迅速搅拌混合物,在搅拌时即开始计时,至混合物不再流动时的时间即为凝胶时间。

喷涂聚脲弹性体优异的性能获得了涂料界和应用客户的一致认可,该技术近几年也得到大规模的发展和改进。


文章版权:

http://www.yaruichemical.com