磷酸三乙酯|阻燃剂TEP|亚磷酸三苯酯|抗氧剂、稳定剂TPPi|磷酸三苯酯|阻燃剂TPP|磷酸三2-氯丙基酯|阻燃剂TCPP
   
联系我们

联系人: 邵君( 先生,国内国际部经理 )
电话: +86-0512-58961066
传真: +86-0512-58961068
手机: +86-18921980669
E-mail: sales@yaruichem.com
地址: 江苏省张家港市杨舍镇东方新天地10幢B307
Skype: yaruichem@hotmail.com
MSN: yaruichem@hotmail.com
QQ: 2880130940
MSN: yaruichem@hotmail.com Skype: yaruichem@hotmail.com

当前位置:首页 > 行业新闻 > 锂离子电池阻燃剂对热稳定性的影响 磷酸三甲酯

锂离子电池阻燃剂对热稳定性的影响 磷酸三甲酯

来源:邵君( 先生,国内国际部经理 ) 发布时间:2016-9-29 12:14:05
电解质对电池安全等有重要影响,锂离子电池的安全性可以分为两个层次,一是电池未被破坏,但是有潜伏发生危险的可能,主要涉及到材料的热稳定性,材料热稳定性尤其正极材料的热稳定性与热失控密切相关;二是电池已破坏,易燃的电解液和电池内部产生的氧气或电池外部的氧气作用,可能发生燃烧甚至爆炸的危险。

选择溶剂(如大金研究的含氟溶剂材料等)或阻燃添加剂在一定程度上,都是对电池极端情况发生有好处的。锂离子电池阻燃剂对热稳定性的影响非常显著,能有效阻止燃烧。

功能电解质已经成为供应商不断开发的产品,从而不断扩展其新产品范畴。国内外知名电解质企业都阐述了他们在新型功能电解质方面的进展,尤其是配合HV正极锂离子电池的电解质添加剂选择方面的进展。

产品基本上覆盖了前述功能添加剂的各类型功能电解质,包括综合类、高温类、高电压类、阻燃类、过充电类以及浸润类等。采用含氟溶剂的电解质,测试锂离子电池在高电压运行下的性能,可使LCO在4.5V(相对金属锂的电压)下较稳定循环。采用含氟溶剂的电解质显示出5V尖晶石正极在4.9V-3.0V下循环稳定性的显著改善等。

高通量方法,High Throughput Approach来合成与筛选及实验材料,可以做到“事半功倍”的效果。寻找适合启停电池用的高低温电解质为例,解决可承受高温储存与低温功率提升两大问题的电解质体系选择。报告给出的结果表明,他们采用6000个电池在一年内完成了实验(平行通道进行),将高温储存阻抗增加降低了40%,使低温阻抗也降低了40%。最后的电解质采用了新的溶剂和添加剂满足宽广温度要求,电解质本身对LTO低温性能起到关键作用,而SEI膜的性质对于石墨和LTO都是重要的。采用高通量电池实验结果与大型电池是吻合一致的,因此,这种高通量方法非常值得关注。

功能电解质已经在锂离子电池产品中得到应用,显示出重要价值。在锂离子电池厂家的IT锂离子电池能量密度不断提升的路线图上,采用提高LCO充电电压的技术路线得到普遍采纳。LCO充电电压提高值对能量密度提升的贡献,显然这一变动就基本上能满足IT制造商对电池能量密度提升的要求。锂离子电池阻燃剂对热稳定性的影响体现在不易燃烧和爆炸,对于电池安全性非常重要。


TMP运输注意事项

运输前应先检查包装容器是否完整、密封,运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与氧化剂、碱类、食用化学品等混装混运。运输车船必须彻底清洗、消毒,否则不得装运其它物品。船运时,配装位置应远离卧室、厨房,并与机舱、电源、火源等部位隔离。公路运输时要按规定路线行驶。


然而,除了正极材料本身的稳定性措施外,重点交流的高电压功能电解质研究与发展是必须的,否则电池的寿命急速下降而失效。同样,在实现动力电池比能量提升时,高电压5V或提高电压的NMC类正极材料也是重点选择对象,此时更需要研究与发展出合适的高电压功能电解质,以在提升锂离子电池性能基础上、实现稳定循环寿命以及电池安全运行等要求。

几位电池制造商的报告充分显示了功能电解质应用于电池产品的效果与成果,如BAK采用4.4VLCO的聚合物电池产品,常温循环寿命可由无功能添加剂的200余次(80%)增至有高电压添加剂的400次以上(90%);又如力神的346974聚合物电池产品采用含高电压添加剂的功能电解质,在4.4V/3V下比能量超过650Wh/L,循环600次容量保持率>90%,电池膨胀率<8%等。

在隔膜研究与应用技术交流和专题讨论中,重点围绕着隔膜涂层(含复合陶瓷隔膜)技术展开,涂层材料主要有陶瓷材料和有机物材料,涂覆(或复合)隔膜乃是当今隔膜应用发展的焦点所在。

隔膜涂层在电池中的显著作用。综合几乎所有隔膜涂层报告内容,不难看出隔膜表面采用涂覆层可以带来明显的好处,首先是提高了隔膜的热稳定性,如陶瓷涂覆后隔膜高温180℃形体保持仍然良好,可避免隔膜收缩造成内部短路,使电池安全性显著提升;其次是提高隔膜对电解液的浸润性,有利于电池内阻降低、放电功率提升;再有是可阻止或降低隔膜氧化,有利于配合高电压正极的操作以及延长电池循环寿命等。

文章版权:

磷酸三苯酯 http://www.yaruichemical.com