磷酸三乙酯|阻燃剂TEP|亚磷酸三苯酯|抗氧剂、稳定剂TPPi|磷酸三苯酯|阻燃剂TPP|磷酸三2-氯丙基酯|阻燃剂TCPP
   
联系我们

联系人: 邵君( 先生,国内国际部经理 )
电话: +86-0512-58961066
传真: +86-0512-58961068
手机: +86-18921980669
E-mail: sales@yaruichem.com
地址: 江苏省张家港市杨舍镇东方新天地10幢B307
Skype: 公司简介 iis7站长之家
MSN: 公司简介 iis7站长之家
QQ: 2880130940
MSN: yaruichem@hotmail.com Skype: yaruichem@hotmail.com

当前位置:首页 > 行业新闻 > 锂离子电池使用的阻燃剂 磷酸三甲酯

锂离子电池使用的阻燃剂 磷酸三甲酯

来源:邵君( 先生,国内国际部经理 ) 发布时间:2016-9-30 11:21:51
锂离子电池所采用的有机溶剂的闪点相对较低(DMC为17e,EMC为23e,DEC为33e),因此当电池过充电或受热时,电池内部易发生电解液的不可逆氧化分解或热分解,产生大量可燃性气体,并引起电池的内压急速上升,电池的外壳一旦胀裂,易发生燃烧,并引发爆炸等。

电解液的燃烧反应通常是氢氧自由基参与的链式反应,因此在电池电解液中添加阻燃剂,可有效地降低电解液的可燃性。商品化的锂离子电池使用的阻燃剂种类繁多,其作用机理也各不相同。通常,在锂离子电池使用的阻燃剂可以分为卤系和磷系。其中,锂离子电池使用的阻燃剂中的磷系阻燃剂主要包括一些烷基磷酸酯、氟化磷酸酯及磷腈类化合物。当磷系阻燃剂受热时,分解释放出含磷自由基,捕获高反应活性的氢自由基,从而起到阻燃作用。

整个电极对厚度(含聚合物电解质与集流体)只有100-200微米,也就是说超薄型电极、电解质与集流体设计与加工是该电池的基本特征。这也正是利用空间增加极群,大大提升电极总面积,让电极的实际电流密度尽量降低,从而降低由于电解质电导率低带来的极化问题。再加上工作温度选择在60-80℃,显著提升了电导,也促使金属锂中放电时的锂离子更容易迁移等。在报告中还特别给了一个计算数据,即采用锂比采用石墨负极还经济(石墨+Cu等,5美元/m2;金属锂,1美元/m2)。这种电池的循环寿命数据,已经可以接近1500次,正极比容量从约158mAh/g降低至约120mAh/g。

无机盐固体电解质全固态要解决两大问题,即材料与电解质制备问题,首先是高电导率、高稳定性电介质材料;二是两个电极与电解质层的界面问题。事实上界面问题是电化学与电池研究者最大的难题所在。丰田的一篇报告(Battery2014)曾对自己几年这方面研究做了详细分析,包括通过表面涂覆层解决高电位正极与电解质的相容性;合适的方法制备出最薄的电解质层薄膜,并具有一定柔性;合适的方法制备出无空隙的带有均匀混合电解质的电极等。


(TMP)

Cas号:512-56-1

海关编码HS:29199000

产品最重要的指标:无色透明液体,含量≥99.5%,水分≤0.2,酸值≤0.02,色 度≤20

退税:目前(TMP)退税为9%

原材料:三氯氧磷与甲醇在碳酸钾存在下反应生成。

属于几类危险品:目前(TMP)属于普货出口,不是危险品。

如果需要(TMP)英文版COA和MSDS资料,请点击 Trimethyl Phosphate

包装方式:净重200KG/镀锌铁桶(一个小柜打托装16吨)、1000KG/IB桶(一个小柜装18吨)或23吨ISOTANK。


中国科学院青岛生物能源与过程所、天津电源研究所与上海硅所都开展了固体电解质的研究,并在各自发展的电解质材料基础上,研制出全固态电池演示样品,显示出一定的性能特征。如中科院青岛生物能源与过程所开发出10Ah聚合物电解质固态金属锂电池(NCM),60℃下循环1000次;中科院上海硅酸盐所研究出立方LLZO固态电解质,室温电导率达到 1.6´10-3 S cm-1。开发出的Li/LLZTO/LiCoO2 样品电池在室温下显示了优良的循环特性;制备出PEO- LLZTO复合柔性电解质膜,应用于制备出3-4Ah电池,已循环了200次。天津电源研究所开发出Gel-LAGP复合电解质,制备出LCO电池,100次循环,比容量仍保持在140mAh/g。而无机盐电解质Li-In/LCO全固态电池样品也显示出较好的充放电特征。

在Armand博士的报告中特别引出,法国已经将金属锂/聚合物电解质/LFP电池用于城市电动轿车,一次充电行驶约200km。同时,从本次论坛的几篇报告以及专题讨论来看,大家一致认为在进一步发展更高高比能量电池时,固体电解质是最终实现安全电池的技术途径,期待未来所有电池走向全固体化。因此,对固态电解质与全固态电池确实已经非常值得我们予以特别关注与发展。

采用石墨负极上的SEI膜稳定性极为重要,但却易于损伤。因此,选择合适的功能添加剂,促使石墨负极上的SEI膜在循环中相对稳定是一项重要工作。建议必须配套选择两种添加剂组合与候选石墨进行至少3个月的验证试验,然后将这种组合与正极放在一起,验证与正极的适应性等。

LFP锂离子电池在高温下循环衰退机理,实验中采用了一系列先进仪器手段,揭示了两个电极循环过程的变化(组分、表面形貌、结构等)。我国大型锂离子电池企业十分重视基础研究,并展现了实力(包括建立先进的研究设施与创新的研究人才队伍等)和已经取得的成果,为扎扎实实推进“实现中国电池制造强国梦”而不懈努力。

文章版权:

磷酸三苯酯 http://www.yaruichemical.com